If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6b^2+9b-15=0
a = 6; b = 9; c = -15;
Δ = b2-4ac
Δ = 92-4·6·(-15)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-21}{2*6}=\frac{-30}{12} =-2+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+21}{2*6}=\frac{12}{12} =1 $
| 3m+7=m+11+3m+1 | | x(105+x)=4 | | 6.75+3/8x=13-1/4 | | 17=59+9t | | (3y+1)=90 | | -48+14x=8x+108 | | 11r-6=16 | | x+34=-82 | | x^2-6x+38=0 | | 9+9p=54 | | 40a^2-4a-8=0 | | 4x+23=287 | | x+8/9=41/36 | | 70=5(z+11) | | 7x-123=-5x+69 | | 6(4x+2)=3(7x+10) | | -5x-2.9=-6x-3.9 | | -4(-x+24)=196 | | 7x+30°=9x+42° | | 0=x²+4x | | 12x+4=18x-2 | | -4x-19=-x+32 | | -5x+(-2x)=-2x+4 | | 4x-20=288 | | -y^2=-8y+4 | | 3(x-6)-28=5x-2(x-7÷1.1) | | 6(c-21)=36 | | 2^9x+2-16^5x-2=0 | | 15x-82=-5x+138 | | 4x+188°=6×+216° | | 9=s-70/3 | | 10x-30=270 |